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A study of the electrophoretic motion of a chain of colloidal spheres along the line 
through their centres is presented. The spheres may differ in radius and in zeta 
potential and they are allowed to be unequally spaced. Also, the spheres can be either 
freely suspended in the fluid or linked by infinitesimally thin rods with arbitrary 
lengths. The fluid can contain an arbitrary combination of general electrolytes. 
Although the thin-double-layer assumption is employed, the polarization effect of 
the mobile ions in the diffuse layer is taken into account. A slip velocity of fluid and 
normal fluxes of ions at the outer edge of the double layer can be derived and used 
as the boundary conditions for the fluid domain outside the thin double layer. Using 
a collocation technique along with these boundary conditions, a set of electrokinetic 
equations governing this problem is solved in the quasi-steady state and the particle 
interaction effects are computed for various cases. The most important discovery is 
that a group of particles with the same zeta potential will interact with one another, 
unlike the no-interaction results obtained in previous investigations assuming that 
the double layer is infinitesimally thin. For most situations, the particle interaction 
among the spheres is a complicated function of the properties of the spheres and ions. 
Also, it no longer varies monotonically with the extent of separation for some cases. 
The phenomena cannot be predicted systematically by a simple general rule. 

1. Introduction 
When a charged particle is placed in an electrolyte solution, it is balanced by a 

surrounding cloud of diffuse ions carrying a net charge equal but opposite to that of 
the particle. The combination of the fixed charge on the solid surface and the 
adjacent mobile ions is termed an electrical double layer. If an external electric field 
is imposed on such a system, the particle will move toward the electrode of opposite 
sign, while the diffuse counterions migrate in the reverse direction, the motion well 
known as electrophoresis. The electrophoretic velocity tYo) of the particle can be 
related to the applied field Em by the Smoluchowski equation 

Here, C is the zeta potential on the shear plane of the particle, e is the dielectric 
constant of the solution, and 7 is the fluid viscosity. Equation (1.1) can be applied 
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to a non-conducting particle of arbitrary shape; however, its validity is based on the 
following assumptions : 

(i) the zeta potential is uniform over the particle surface ; 
(ii) the local radius of curvature of the particle is much larger than the thickness 

of the double layer, i.e. KL + co, where K - ~  is the Debye screening length and L is the 
characteristic length of the particle ; 

(iii) the ion concentrations are not affected by the imposed field, that is, the cloud 
of diffuse ions is at equilibrium. 

In fact,, the equilibrium distribution of the ions inside the double layer would be 
distorted when an external electric field is imposed. This so-called polarization of the 
double layer becomes significant when the zeta potential is large. O’Brien & White 
(1978) studied the electrophoretic motion of a spherical particle when the applied 
field is not strong. Taking the double-layer distortion as a perturbation, their work 
involving numerical calculations was applicable to a broad range of 5 and KL. On the 
other hand, Dukhin & Derjaguin (1974) obtained an analytical mobility expression 
for a charged sphere with a thin but polarized double layer in a symmetric electrolyte 
solution. Later, O’Brien (1983) extended their analysis to explore this locomotion for 
the case of an arbitrary combination of general electrolytes. The advantage of 
Dukhin & Derjaguin’s theory is that a ‘slip velocity’ a t  the outer boundary of the 
diffuse layer has been derived, so the only region one needs to take into account is 
the neutral fluid phase outside the double layer. It was found that the effect of 
polarization of the double layer is to impede the particle’s movement. One reason for 
this outcome is that the back field resulting from the polarization of the diffuse ions 
has a tendency to resist the imposed field. The electrophoresis of a spheroid with a 
thin distorted double layer has also been studied by Dukhin & Shilov (1980) and 
O’Brien & Ward (1988). They found that this polarization effect would even change 
the direction of the spheroid’s migration, making it no longer parallel to the applied 
field. 

In most real electrophoresis situations, collections of particles are encountered. 
Thus, it is important to examine how the presence of its neighbours affects the 
movement of a particle. Recently, much progress has been made in the mathematical 
analysis of the particle interactions in electrophoresis of dielectric spheres with an 
extremely thin double layer, i.e. KL + co. Chen & Keh (1988) utilized a method of 
reflections to analytically solve the problem of electrophoretic motion of two 
arbitrarily oriented spheres with arbitrary ratios of radii and zeta potentials. 
Corrections to Smoluchowski’s equation due to particle interactions were determined 
in a power series in r;: up to O(r; i ) ,  where rI2 is the centre-to-centre distance between 
the spheres. Another approach to investigate the two-sphere motion is to utilize 
spherical bipolar coordinates. By this means, the electrophoretic mobilities of two 
non-rotating spheres with equal sizes were first computed by Reed & Morrison 
(1976), and recently this work was extended to the situation of two arbitrary freely 
suspended spheres (Keh & Chen 1989a, b) .  Later a third routine employed to solve 
this problem was the multipole collocation technique, which can be used to examine 
the motion of a collection of more than two arbitrary spheres. It can also allow the 
calculation of the electrophoretic mobilities of a group of spheres separated by any 
distance, including when they are touching (Keh & Yang 1990, 1991). One of the 
common conclusions from the above articles is that there is no particle interaction as 
long as all spheres have the same zeta potential. 

Until now, the interactions among particles with polarization of the double layer 
have not been investigated. The object of the present work is to study the 
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axisymmetric electrophoretic motion of multiple spheres, which are surrounded by 
distorted clouds of diffuse ions, directed along their line of centres. It is assumed that 
the thickness of the double layer is small but the value of KL is still finite. The spheres 
may differ in radius and in zeta potential and they are allowed to be unequally 
spaced. Also, the fluid solution can be composed of more than one kind of general 
electrolyte. By using a multipole truncation (or collocation) technique, a set of 
electrokinetic equations is solved semianalytically in the quasi-steady state. The 
spheres’ velocities are obtained with good convergence for various cases. In the 
limiting case of KL + co, our results are in excellent agreement with those obtained 
in previous analyses (Keh & Chen 1989a; Keh & Yang 1990). 

This paper is presented in five sections. In $2, we adopt O’Brien’s (1983) theory 
and follow the same procedure to briefly restate the derivation of the slip velocity at  
the outer edge of the double layer. In addition to the derivation of some analytical 
formulae for the case of a symmetric electrolyte, we make a slight modification to the 
calculation of the electrophoretic velocity by a numerical integration following the 
numerical solution of the Poisson-Boltzmann equation for the case of general 
electrolytes. Then, the multipole collocation technique is employed to solve the 
electrokinetic equations for the axisymmetric motion of N spheres located on a 
straight line through their centres in $3. In $4, we exhibit the results for the 
electrophoretic motion of an isolated sphere, of two free spheres, of three free spheres, 
and of a rigid dumbbell. Finally, a short summary of this work is given in $5.  

2. Electrophoresis of a dielectric particle 
Consider the electrophoretic motion of a non-conducting particle in an unbounded 

quiescent fluid. The particle is charged uniformly on the surface and the thickness of 
the electrical double layer is assumed to be small compared to the particle dimension. 
The bulk number densities of all ions in the electrolyte solution beyond the double 
layer are constant. In spite of the assumption of a thin double layer, the electric-field- 
induced polarization of ionic distribution in the double layer will still be considered. 
The gravitational effect is ignored. Our aim in this section is to analyse such a system 
and to introduce how the polarization of the diffuse layer influences the 
electrophoretic mobility of the particle, which can no longer be predicted properly by 
the Smoluchowski equation. 

2.1. Electrokinetic equations 

To calculate the electrophoretic mobility of a charged particle, in general, it  is 
necessary to determine the ionic concentration, electrical potential and fluid velocity 
distributions in the electrolyte solution. When there is no chemical reaction 
occurring among the ions and the system is in a steady state, the conservation of all 
M ionic species requires that 

V - J , = O ,  m = l , 2  ,..., M, 

where J, is the density flux of the mth type of ion. If the electrolyte solution is dilute, 
this flux of density is given by (O’Brien 1986) 

J, = n, v-n, D ,  Vp,IkT, 

pm = porn + kTln n, + ez, a. 

(2.2) 

(2.3) 

with the electrochemical potential energy of the mth species of ion, p,, defined as 

9-2 



254 S. B. Chen and H .  J .  Keh 

Here, v is the fluid velocity; @ is the electrical potential; n,, D ,  and z, are the 
number density, diffusion coefficient and valence of type-m ions, respectively ; k is the 
Boltzmann constant ; T is the absolute temperature ; e is the charge of a proton ; PO, 
is a constant. The first term on the right-hand side of (2.2) represents the convection 
of the ions by the fluid and the second term indicates both the diffusion and the 
electrically induced migration of the ions. 

Because the Reynolds number for the electrophoretic motion is so low that the 
inertial effect is negligible, the fluid flow field satisfies the modified Stokes equations 

qv2v-vp  = p e w ,  v - v  = 0, (2.4a, b)  

where q and p are the fluid viscosity and pressure distribution respectively, and 
pe = ~ ~ - l e z m n m  denotes the charge density of the fluid. 

If the intensity of the applied electric field is not high, the ionic number densities 
and the electrical potential deviate very slightly from those a t  equilibrium. Hence, 
we can express them as 

n,  = nO,+Sn,, @ = @ O + 6 @ ,  (2.5a, b )  

where Go and nO, are the equilibrium electrical potential and ionic number densities, 
respectively, that satisfy the Boltzmann distribution ; the small quantities Sn, and 
6@ refer to related perturbations. By combining (2.1)-(2.5) and ignoring the products 
of the small quantities, a set of electrokinetic equations for the fields p, and v can 
be obtained (O’Brien &, White 1978; O’Brien 1983): 

nO,VZ,um+VnO,.Vp, = -Vn,.v, kT 0 m = 1,2 ,  ..., M ,  
D m  

M 

qV2(v  x v )  = Vnk x v p , .  
m-1 

( 2 . 6 ~ )  

(2.6b) 

Beyond the double layer (the ‘inner’ region) surrounding the particle, or in the 
‘outer’ region, no ionic concentration gradients VnO, occur and the fluid is electrically 
neutral. The electrokinetic equations (2.6) become 

V2p ,  = 0, m = 1 ,2  ,..., M ,  

V2(V x 0 )  = 0.  

( 2 . 7 ~ )  

(2.7 b)  

Since matched expansions for electrochemical potentials and fluid velocity in both 
regions can be constructed for the case of a thin double layer, the usual strategy is to 
solve (2.7) for p,,, and v and the solution obtained for the inner region supplies 
boundary conditions for the outer region. 

2.2. Boundary conditions at the outer edge of the thin double layer 

Since the double-layer thickness on a lengthscale K - ~  (the Debye length) is much 
smaller than the particle dimension L (the shape of the particle can be arbitrary), we 
may regard the double layer as a structure composed of a charged plane interface and 
an adjacent diffuse cloud of ions. From the equation of continuity (2.4b), it is quite 
apparent that the ratio of tangential to normal fluid velocities in the double layer is 
o f 0 ( ~ L ) .  This implies that the flow within the diffuse layer is primarily tangential to 
the particle surface. It could be shown from ( 2 . 6 ~ )  that ,urn is constant across the 
double layer, which means that the double layer is in local (but not global) 
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equilibrium. By integrating (2.6b) over the double layer, the tangential fluid velocity 
relative to the particle surface within the double layer can be derived (O'Brien 1983) : 

where y (or y") is the perpendicular distance from the particle surface, nz is the 
constant bulk number density of type-m ions, and V, = ( / -nn) -V  (n  is the unit 
normal to the solid surface pointing into the fluid phase and / is the unit dyadic) 
denotes the gradient tangential to the particle surface. At the outer edge of the 
diffuse cloud (y+ a), a 'slip velocity ' results : 

l M  

17 m-1 
v, = -- C V , p m  

This slip velocity comes from the tangential gradients V,pm which vary with position 
along the particle surface. 

When the electric field sweeps double-layer ions across the particle surface, there 
may be some portions of the surface where the net tangential ion fluxes will be 
negative and consequently normal ion influxes occur just beyond the double layer. 
Over the other parts of the surface, however, the net tangential ion fluxes are 
positive, thus some ions in the double layer will be expelled out into the bulk 
electrolyte solution to prevent accumulation of the ions. Using this, it can be shown 
that at the outer edge of the double layer (O'Brien 1983)t 

p m k  
M 

n - V p m = - z m C - L V , 2 p k ,  m =  1,2 ,..., M ,  
k-1 ' k  

(2.10) 

with 

where V,2 = (/- nn) : VV is the surface Laplacian operator ; the non-dimensionalized 
variables (denoted by an overbar) are g = K Y ,  &O = @Oe/kT, and 

= nF/ 5 zLn$; fm = ~ ( k T ) ~ / 6 q e ~ D ,  
m-1 

is the dimensionless drag coefficient of ion m ;  t is the thickness of the double layer; 
dmk denotes the Kronecker delta which is unity if m equals k, and zero otherwise. As 
KL + co, Pmk approaches zero, and hence the terms on the right-hand side of (2.10) 
vanish. This indicates that there is no ion flux normal to the surface just beyond the 
double layer, the same boundary conditions as that employed in the derivation of the 
Smoluchowski equation. 

Because the errors in the derivation of (2.11) are 0 ( 1 / ~ L ) ,  the integrals in this 
equation must be large (i.e. the zeta potential of the particle must be high such that 

t There is a certain arbitrariness in the way some integrals are evaluated in the O'Brien 
methodology. Formula (2.11) is somewhat different from his result. In the Appendix, we show the 
derivation of (2.11) and include a short discussion. 
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the ratio exp (elz, [1/2kT)/~L is O( 1))  to allow the neglect of these errors. Even so, 
(2.11) can in fact be applied for any zeta potential since at low zeta potential the 
coefficient pmk itself is an 0 ( 1 / ~ L )  quantity and the effects of the double-layer 
polarization become unimportant. In  $4.1, the results of the electrophoretic mobility 
for a spherical particle with an arbitrary zeta potential and a large value of KL 
obtained using (2.11) are found to be in good agreement with the ‘exact’ (numerical) 
calculations by O’Brien & White (1978). 

For a symmetric two-species electrolyte with the absolute value of valence 2, an 
analytical solution for 6’ is available. Thus, all values of Pmk defined by (2.11) can 
be calculated analytically. In  the Appendix, we show that 

( 2 . 1 2 ~ )  

(2.12b) 

(2.12 c) 

-1 e x p ( - 0 s i n h c + T ( c - l n c o s h ~ )  12f2 - , (2.12d) 
2 

where g= ZeLJ4kT; 5 is the zeta potential of the particle. The subscripts 1 and 2 for 
m or k of the variables denote the anion and cation, respectively. Note that the errors 
in (2.12) are still 0 ( 1 / ~ L ) ,  like those in (2.11). 

If the fluid solution does not contain only one type of symmetric electrolyte but 
consists of an arbitrary combination of ions, it is impossible to evaluate pmk 
analytically because there is no analytical expression for 6’. However, this difficulty 
could be overcome by utilizing an asymptotic solution of 6’ for the case when the 
particle is charged highly. In addition, it could be argued that only the most highly 
charged counterions play a major role in the ionic flux normal to the particle surface 
(O’Brien 1983), that is, boundary condition (2.10) may be approximated by 

( 2 . 1 3 ~ )  

n-Vp, = 0 otherwise, (2.13 b)  

with h = [exp (elzUlJ/2kT)- l ] / a ~ L  (2 .14~)  

and (2.14b) 

Here the subscript CT refers to the counterions with the highest charge, and xk 
denotes summation over all of those ionic species, for which z, = z,. If there is merely 
one kind of counterion with the largest absolute valence, the boundary condition 
(2.13) could be simplified as 

n-Vp, = -PmmLV,2pm, m = 1,2, ..., M ,  (2.15) 

with 
2 3f exp(elzmtJ/2kT)-1 

p m m  = (z) (1+y) jzmlKL if z, = z,,, (2.16 a) 
n m  m 

Pmm = 0 otherwise. (2.16b) 
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To check the validity of the approximate boundary condition (2.13) or (2.15), we 
compare the magnitudes of all prnk for a symmetric electrolyte. For example, if the 
particle is charged positively, it is found from (2.12) that Pl1 is at  least one order of 
magnitude larger than the others, which are no more than O(10-2). Hence, the 
estimation that only the most highly charged counterions dominate the normal ion 
flux, whereas the effect from the others may be negligible, appears reasonable. 

2.3. Electrophoresis of an isolated particle 
We now consider the electrophoresis of a single particle when a uniform electric field 
Em is applied. In  the fluid phase outside the thin double layer, the electrochemical 
potentials p, satisfy Laplace’s equation ( 2 . 7 ~ )  and the velocity field is governed by 
the Stokes equations or (2.7 b). 

The potential gradient far away from the particle approaches the applied electric 
field and the fluid is motionless there. Thus, p, and u must obey 

lrl+m: Vpm+-eezmEm, v+O,  (2.17a, b) 

where r is the position vector from the particle centre. At the particle ‘surface’, p, 
is subject to boundary condition (2.10) or (2.13) and o is given by the following 
according to (2.9): 

(2.18) u =  U + O x r - -  Wspm y(n&-nz)dy, 

where U and O are the translational and angular velocities of the electrophoretic 
particle to be determined. Here the particle ‘surface’ means the outer edge of the 
diffuse layer. 

Since the surface encloses a neutral body (charged interface plus diffuse ions), the 
particle is force and torque free, that is 

1: l M  

7 m-1 

(2.19 a )  

r x (n.se)dX = 0 ,  (2.19b) 
T =  II1partic,e surface 

where se is the fluid stress tensor. With the constraints above, one can compute U and 
O after solving (2.7) for the electrochemical potentials and the fluid velocity. 

If the particle is a sphere, the velocities U and 0 can be determined through the 
above procedure, and the results are (O’Brien 1983) 

0 = 0  (2.20b) 

with 3fm ] for z, = z,, 
2 (2+2A) i+z;(l+hw,) 
1 3h c, = (2.21a) 

c, = otherwise, (2.21 b)  
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FIGURE 1. Geometrical sketch of the electrophoretic motion of multiple spheres. 

where (2.22) 

Of course, the particle dimension L is equal to its radius a now. The equilibrium 
electrical potential 6O can be obtained by solving the Poisson-Boltzmann equation 
by the numerical Runge-Kutta method, and then the integral in ( 2 . 2 0 ~ )  can be 
calculated numerically. 

If the zeta potential of the sphere is small and KU+ co, the polarization of the 
double layer is weak enough that there are hardly any ion fluxes in the normal 
direction. In this case, h + 0 and each c, is equal to 0.5. In fact, the following relation 
always holds for a planar surface : 

e6 M 
C z, 1: aexp  (-z,$O) - 11 dg = -- 

m-1 kT ’ (2.23) 

which could be derived from the integration of the Poisson-Boltzmann equation. 
Therefore, ( 2 . 2 0 ~ )  is reduced to the Smoluchowski equation (1.1) and the slip 
velocity (2.9) at the outer edge of the diffuse layer becomes the simple Helmholtz 
expression for electro-osmotic flow. 

Specifically, if only a symmetric electrolyte exists in the fluid surrounding the 
sphere, boundary condition (2.10) with the values of P m k  provided in (2.12), instead 
of (2.13), will be used. Then, c1 and c2 in (2.21) are given by 

C l  = ~ t + ~ A z - ~ P 1 z - P 1 1  +PlZPZl -P11  P2z)lA, (2.24 a) 

CZ = (t + ; A 1  - iPZ1  - P z z  + PlZ PZl -P11  PZAld, (2.24 b )  

where A = ~ + P 1 1 + P z z + P 1 1 P 2 2 - P 1 2 8 2 1 .  (2.25) 

The integral in ( 2 . 2 0 ~ )  can be analytically computed as follows: 

JOm Hexp ( k2mo) - 11 dg = +4r+4 In cosh (2.26) 
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and the particle velocity is analytically expressed as 

4kT 
(2.27) 

If we assume fl = f 2  = f, and neglect the small quantities of /311/?22 and Pl2Pzl, (2.27) 
can be reduced to 

Wsinh2 c+ (1 - W+ (26 - l  sinh 2 6  In cosh 
~a + 8Wsinh2 c+ 8( 1 - W )  In cosh g U = - E ,  1 -4  

47rr “ [ 
where W =  1 + 3 f / Z 2 .  (2.29) 

This result is just that derived by Dukhin & Derjaguin (1974)t .  

3. Analysis for the electrophoresis of multiple spheres 
In this section, we consider the axisymmetric electrophoretic motion of N colloidal 

spheres located along the z-axis as shown in figure 1. The ambient fluid is unbounded 
and the externally imposed electric field E ,  e, is uniform. Here, e, is a unit vector in 
the circular cylindrical coordinate system ( p ,  9, z )  with the origin taken at the centre 
of the first sphere for convenience. The zeta potentials and radii of the spherical 
particles may differ from one another and the gap widths between two neighbouring 
particles need not be identical. The electrolyte solution contains M different types of 
ion but, for simplicity, only one corresponding kind of counterion with the highest 
charge for each particle. It is assumed that the thickness of the double layer is much 
smaller than the particles’ radii. However, the effect of polarization of the diffuse 
cloud described in the previous section will be taken into account. The purpose is to 
determine how the electrophoretic velocity of each particle is affected by the presence 
of the others. 

3.1. Electrochemical potential distributions 
Because the bulk ionic concentrations outside the double layers are uniform, the 
electrochemical potentials obey Laplace’s equation ( 2 . 7 ~ ~ )  and are subject to the 
following boundary conditions according to (2.15),  (2.16) and ( 2 . 1 7 ~ )  : 

= - ~ ~ ~ ~ a ~ ~ ~ p ~  a t  rt = a,, 
art 

( 3 . 1 ~ )  

Qp, +. - ez,  E ,  e, as (p2 + z2)t + co, ( 3 . l b )  

with 

Pmmi = 0 otherwise, (3.2b) 

for i = 1 , 2 ,  . . . ,Nand m = 1 ,2 ,  . . . , M .  Here, a, is the radius of sphere i (more precisely, 
the distance from the sphere centre to the outer edge of the diffuse layer surrounding 
the sphere), (r,, 8,, 9) are spherical coordinates measured from the centre of particle 
i ,  and index c, denotes the most highly charged counterions for sphere i .  

t There are printing errors in the numerator of (93) in Dukhin & Derjaguin’s article, p. 307. 
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A general solution to ( 2 . 7 ~ )  suitable for satisfying (3.1) is (Keh & Yang 1990) 

j=1 n=O 

for m = 1,2, . . . , or M ,  where P, is the Legendre polynomial of order n and q, denotes 
cos 0,. This solution form satisfies (3.1 b )  immediately and the coefficients Am,,, will be 
determined using ( 3 . 1 ~ ) .  In  order to apply (3.3), r, and qi must be written in terms 
of a single coordinate system : 

r, = [p2  + ( ~ - - d ~ ~ ) ~ ] : ,  

q, = ( Z - d 1 , ) / b 2  + (z-d1,)21t, 

where d,, is the distance between the centres of particles i and j (so d,, = 0). 
With the aid of the relations 

(3 .44  

(3.4b) 

we introduce p m  in (3.3) into the boundary condition (3 . la )  to obtain 



(3.94 

N m  

c c ~ 2 j n  { 8 2 2  al[q:(n + 1) Gn+l(rj, 91) - ( 1 -q:) Hn+, ( r j ,  q j )  
1-1 n-0 

2P22a1 + 2qi( 1 - q:)' (n + 1) ~ n + 1  ( r j ,  qj)l+ (1 + -) [(I - q:)'~n(Tj, q j )  + qi ~ n ( r j ,  n j ) ~ }  
Ti  

~ 2 1  a1{ q:(n + 1) Gn+l(rj, n j )  - ( 1 -q:) Hn+l(rj, q j )  

2 

ri 
+2qt(l-qi)t (n+ l)Fn+l(rj, q j )  +-[(I -q:)iFn(Tj, q j )  +qi~n(rj ,  9j)1} 

= [ 1 - % ( ~ ~ ~ + ~ ~ ~ ) ] q ~ ,  atr,=a,, f o r i =  1,2 ,...,  or^. (3.9b) 

To satisfy boundary condition (3.1 a) exactly along the entire semicircular 
generating arc of each sphere would require the solution of the entire infinite array 
of unknown coefficients Amjn. However, the multipole collocation method allows one 
to truncate the infinite series in (3.3) into a finite one with K terms, 

Ti  

N K-1 

,urn = yR+kTlnn~-ez,Emz+ezmEm x x Amjnr;(n+l)Pn(q,), (3.10) 

and then to enforce the boundary condition (3.6) at K discrete points on the 
generating arc of each sphere (Gluckman, Pfeffer & Weinbaum 1971 ; Keh & Yang 
1990). As a result, for N spheres in the chain, this yields a set of KN simultaneous 
linear algebraic equations for the KN unknown coefficients Amjn (for each value of m) 
of the truncated solution (3.10) : 

j-1 n-0 

N K-1 

9-1 x n-0 z Amjn{Bmm,al[q:kt(n+ l ) G n + l ( r j k t , q j * i ) - ( l - q : ~ i ) H n + l ( r j k i , q j k i )  

+ 29.,,,(1 -q:kt); (n+ 1) K+l(r,ki, Q,ri)l 

(3.11) 



262 S. B. Chen and H .  J .  Keh 

where i = 1,2, . . . , N ;  k = 1,2, . . ., K ;  rjkC and qfk,  denote the values of r, and q, at the 
position of the kth point on the generating arc of particle i. This matrix equation can 
be solved by any standard matrix reduction technique to yield the Aml, coefficients 
in (3.10) for the electrochemical potential distributions p,. In  general, the larger the 
value of K ,  the more accurate the result will be by this truncation technique. 
Naturally, the truncation error vanishes as K +  00. 

Similarly, boundary condition (3.8) for the case of fluid containing only one 
symmetric electrolyte can also be applied using the truncation method to generate 
a set of 2KNalgebraic equations for coefficients A , ,  and Azl,. However, A,, and A , ,  
are coupled here, unlike any A,,, in (3.11) which is independent of the others with 
different values of m. 

3.2. Fluid velocity distribution 
Knowing the electrochemical potential distributions in the fluid phase, we can now 
take up the solution of the fluid velocity field. Because the fluid outside the thin 
double layers is neutral, the velocity field is governed by the quasi-steady fourth- 
order differential equation for axisymmetric creeping flow, 

E4Y = E2(E2!P) = 0, (3.12) 

where Y is the Stokes stream function, and the operator E2 has the following form 
in spherical coordinates ( r ,  O , $ )  : 

(3.13) 

The velocity components in circular cylindrical coordinates are expressed by 

(3.14u, b )  

The boundary conditions for the fluid velocity beyond the double layers surrounding 
the spheres, resulting from (2.17b) and (2.18), are 

( 3 . 1 5 ~ )  

as (p2+z2) f+  00, (3.15b) 

for i = 1,2, . . . , N .  Here nO,, denotes the equilibrium number density of ion m within 
the double layer surrounding sphere i ,  yt is the perpendicular distance from the 
surface of sphere i, and Ut is the instantaneous electrophoretic velocity of sphere i to 
be determined. The spheres will not rotate owing to the axial symmetry of the fluid 
motion. V,pm can be calculated from the electrochemical potential distribution 
(3.10) with A,,, determined by (3.11). The integral in ( 3 . 1 5 ~ )  must be evaluated 
numerically except for the special case of a symmetric electrolyte. 

The general solution of (3.12) for Y, which satisfies boundary condition (3.15b) 
immediately, is (Gluckman et al. 1971 ; Keh & Yang 1990) 

1: l M  

"I m-1 
u = Ute , - -  V , p ,  gt(nO,,-n:)dy, a t  r, = a,, 

u + o  

N ~ o  

1-1 n-2 
Y = [B,, r;,+l+ C,, r ~ , + ~ ]  G;:(q,), (3.16) 

where G$(q,) is the Gegenbauer polynomial of order n and degree -+. Unknown 
coefficients B,, and C,, are to be determined from ( 3 . 1 5 ~ ) .  

Substituting (3.3) and (3.16) into boundary condition ( 3 . 1 5 ~ )  and using the 
formulae (3.14) as well as the recurrence relations of the Legendre and Gegenbauer 
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polynomials, it is shown that the coefficients Bfn and C,, must fulfil the following set 
of equations for i = 1,2,  . . . , N :  

N m  

C C [Bjnsn(rj, ~ j )  + c j n  Tn(rj, qj)I 
j-1 n-2 

( 3 . 2 0 ~ )  

where i = 1,2,  .. ., N and k = 1,2, . . ., K .  The 2" unknown coefficients Bjn and Cjn 
could be easily calculated in terms of the particle velocities U, by simultaneous 
solution of the above equations. 
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3.3. Velocities of free spheres 
The drag force exerted by the fluid on each particle surface rt = ai can be determined 
from (Happel & Brenner 1983) 

(3.21) 

Substituting (3.16) or (3.19) into the above integral and utilizing the orthogonality 
properties of the Gegenbauer polynomials yields the simple relation 

Fi = 4~qC,,. (3.22) 

This means that only the first multipole contributes to the drag force on each 
particle. 

Because the particles are freely suspended in the fluid and the 'surface' of each 
encompasses a neutral body, no net drag force from the fluid acts on the particles. 
From (3.22), it  is apparent that 

C , , = O  for i = l , 2  ,..., N .  (3.23) 

The electrophoretic velocities Ui of the N spheres can be determined by solving the 
above N equations simultaneously and expressed as 

ui = Mi uto, (3.24) 

where U,, is the electrophoretic velocity of particle i when it is isolated from the 
others. The derivation of U,, has been discussed in $2.3. The mobility parametersdl, 
depend on the relative positions, sizes and zeta potentials of the particles as well as 
the bulk concentrations, valences and diffusivities of the ions. 

3.4. VeZocity of a rigid cluster of 8pheres 
We now consider the electrophoretic motion of a rigid cluster of N spheres. The 
spheres are all located along the z-axis and are connected through their centres with 
rigid rods of arbitrary lengths. The connecting rods are assumed to be infinitesimally 
thin compared to the sphere sizes; hence they make neither electrostatic nor 
hydrodynamic contributions but only serve t o  ensure the rigid-body motion of the 
cluster. Here, our object is to explore the electrophoresis of aggregates formed by 
flocculation or bridging of colloidal particles in a suspension. 

The difference between the case here and that of free spheres in the previous 
subsection is that the N spheres in the chain translate at  the same speed U,, the 
electrophoretic velocity of the cluster, and the drag force on each individual particle 
no longer vanishes but the total force on the entire cluster disappears, that is, 

N 
F =  Ce=O. 

i = l  
(3.25) 

Utilizing (3.22), the requirement of U, = U, and the relation above, U, can be 
determined straightforwardly. 

4. Results and discussion 
In  this section, we present our results for the axisymmetric electrophoretic 

motions of a single sphere, of two free spheres, of three free spheres, and of a rigid 
cluster of spheres. The details of the collocation scheme used for this work were given 



Axisymmetric electrophoresis of multiple colloidal spheres 265 

1 .o 

5.0 
7.0 

100 { 3.0 

1 .o 

5.0 
7.0 

200 { 3.0 

1 .o 
400 [ ::: 

7 .O 

z=1 

A B 

0.984 0.993 
0.910 0.929 
0.751 0.765 
0.525 0.525 

0.992 0.997 
0.952 0.962 
0.851 0.862 
0.664 0.669 

0.996 0.998 
0.975 0.981 
0.917 0.925 
0.788 0.795 

2 = 2  

A B 

0.973 0.981 
0.739 0.746 
0.316 0.316 
0.129 0.130 

0.986 0.990 
0.844 0.849 
0.433 0.433 
0.158 0.158 

0.993 0.995 
0.913 0.916 
0.578 0.579 
0.210 0.209 

2 = 3  

A B 

0.950 0.958 
0.433 0.435 
0.1 14 0.115 
0.07 0.068 

0.974 0.978 
0.574 0.575 
0.135 0.135 
0.07 0.069 

0.987 0.989 
0.715 0.717 
0.173 0.173 
0.07 0.071 

TABLE 1. The electrophoretic velocity of a single sphere in a solution containing only one 
symmetric electrolyte of valence 2 withf= 0.4, as computed from (2.20) (listed in column A) and 
(2.27) (listed in column B) 

by Keh & Yang (1990). To avoid superfluity, only the fluid containing one symmetric 
electrolyte will be considered. 

4.1. A single sphere 
The electrophoretic velocity of an isolated sphere can be evaluated using (2.20) for 
the general case, or (2.27) for the special situation when the fluid contains only one 
symmetric electrolyte. A comparison of the results calculated for various cases of 
symmetric electrolyte, with the dimensionless ionic drag coefficients f, = fi = f = 0.4, 
from the two formulae is illustrated in table 1. Although (2.20) generates a slightly 
smaller electrophoretic velocity value than (2.27) does for the case of a not-too-high 
zeta potential, the agreement between them is very good. Thus, our judgment that 
only the normal flux of the most highly charged counterions needs to be considered 
is quite reasonable. 

From (2.27) or (2.28), it is easily found that the particle mobility is affected by four 
factors: c, 2, f and K a .  As shown in figure 2, in which the diagonal represents the 
prediction by the Smoluchowski equation (1. l),  the electrophoretic mobility is 
reduced owing to the polarization of the double layer. The non-equilibrium 
distribution of the ions within the double layer results in a back field and tangential 
osmotic pressure gradients which reduce the driving force for fluid flow (O’Brien & 
Ward 1988). When 6 increases, the concentration of counterions in the diffuse layer 
becomes high and, consequently, the normal fluxes of these ions are significant, so 
that the deviation of the mobility results from (1.1) becomes more apparent. In 
addition, if the counterion carries a higher charge, the movement of the particle will 
be slowed down more significantly. From figure 2, i t  can also be seen that when the 
thickness of the double layer decreases, that is KU becomes larger, the results will get 
closer to what (1.1) predicts. This is understandable because as K a  becomes larger it 
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- f= 0.4, KU = 100 
- f =  0.4, KU = 300 
- 
----- f =  0.2, Ka = 300 

6 " 

0 2 4 6 

I;elkT 
FIGURE 2 .  Plots of the normalized electrophoretic mobility of an isolated sphere versus the 

dimensionless zeta potential SelkT for different values of KU and f. 
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2al4z 

FIQURE 3. Plots of the mobility parameters of two identical spheres (MI =M,) versus the 
separation parameter 2u/d,, with KU = 100 andf = 0.2 (solid curves) orf = 0.4 (dashed curves) : (a) 
2 = 1, ( b )  2 = 2, (c )  2 = 3. 
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FIGURE 4. Plots of the mobility parameters of two identical spheres versus the dimensionless 

zeta potential &/kT with 2a/d, ,  = 0.6 andf = 0.4: (a) 2 = 1, ( b )  2 = 2, (c) 2 = 3. 

approaches the traditional assumption of K a  + 00 for the electrophoretic problems. 
The effect of the last factor, f, on the particle’s mobility is shown in figure 2 for the 
cases off = 0.2 and 0.4 (representing the bounds for most realistic aqueous systems). 
The mobility is lessened as the ionic drag coefficient becomes large, but its influence 
is of less importance. 

We have also evaluated the electrophoretic mobility of a spherical particle in an 
aqueous solution of KC1 using (2.27) for various values of K a  ( 3  100) and y (large or 
small) ; the results are in quite good agreement with the numerical values of O’Brien 
& White (1978). 

4.2. Two identical free spheres 
Numerical results, obtained by using the collocation technique, for two identical 
spheres (a,  = a2 = a ,  {, = C2 = 5) undergoing electrophoresis along their line of 
centres are presented in this subsection. Here we only consider the special case that 
the fluid consists of a single type of symmetric electrolyte. In other words, (3.9) is 
applied to solve the unknown coefficients A,,, and A23n in (3.3) for ,urn. The most 
important discovery is that, unlike the conclusions of the previous studies in which 
the effects of polarization of diffuse ions were ignored (Reed & Morrison 1976; Chen 
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1.045 I 
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1.025 

M, 
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10' 103 10' lo5 ion 10' 
K a  

FIGURE 5. Plots of the mobility parameters of two identical spheres versus the ratio of the sphere 
radius to the Debye length KU with 2a/d,, = 0.6 andf= 0.4: (a)  2 = 1, (a) 2 = 2, (c) 2 = 3. 

& Keh 1988; Keh & Chen 1989a), interactions exist between the two spheres even 
though they have equal zeta potentials on the surface. 

It is evident, as shown in figure 3 (a-c), that the mobility parameter M I  (= M 2 ) ,  
indicating the extent of particle interaction, is a function of the separation parameter 
2a/dI2.  The ionic drag coefficient (f, = f 2  = f  is assumed) affects the particle 
interaction slightly. In particular, the two curves for f = 0.2 and f =  0.4 
nearly coincide for the cases when Z = 1 and ce/kT = 2 in figure 3(a ) ,  Z = 2 and 
ce/kT = 5 in figure 3 ( b )  and 2 = 3 and <e/kT = 8 in figure 3(c).  In general, the two 
spheres are speeded up by each other when they get closer except when the particles 
have a large zeta potential and the counterions carry a high charge. As shown in 
figure 3(c), when ce/kT = 8 and 2 = 3, the movement of the two particles is slowed 
down and there exists a minimum in their electrophoretic velocity at about 
2a/dl ,  = 0.7. 

Figure 4 is drawn to show the interaction effect between the two spheres versus the 
particles' zeta potential when the separation parameter 2a/d l ,  is kept constant. 
When 2 = 1, as illustrated in figure 4 ( a ) ,  the mobility parameter of each particle is 
a monotonic increasing function of the non-dimensional zeta potential <e/kT ranging 
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6 1  e - 
kT 

1 

3 

5 

8 

6, e - 
kT 

5 

6 

-5 

-8 

2a - 
4, 

0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
1 .o 
0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
1 .o 
0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 
1 .o 
0.2 
0.4 
0.6 
0.8 
0.9 
0.95 
0.99 

I 
1 
I 
I 1 .o 

Z = J  z = 2  2 = 3  

Ml M2 

1.0034 0.9993 
1.0279 0.9939 
1.1036 0.9753 
1.3217 0.9164 
1.6076 0.8387 
1.8853 0.7645 
2.2685 0.0632 
2.4107 0.6259 

1.0013 0.9999 
1.0101 0.9991 
1.0339 0.9931 
1.0866 0.9653 
1.1413 0.9278 
1.1839 0.8974 
1.2163 0.8739 
1.2185 0.8723 

0.9983 0.9983 
0.9857 0.9857 
0.9442 0.9442 
0.8139 0.8139 
0.6293 0.6293 
0.4337 0.4337 
0.1274 0.1274 
o.Oo0 o.Oo0 

0.9988 0.9988 
0.9899 0.9899 
0.9603 0.9603 
0.8610 0.8610 
0.7025 0.7025 
0.5106 0.5106 
0.1609 0.1609 
o.oO0 o.oO0 

1.0021 0.9997 
1.0164 0.9968 
1.0561 0.9837 
1.1490 0.9341 
1.2441 0.8734 
1.3096 0.8304 
1.3383 0.8101 
1.3203 0.8207 

1.0015 1.0013 
1.0114 1.0096 
1.0361 1.0259 
1.0762 1.0413 
1.0919 1.0631 
1.0763 1.1208 
0.91 1.47 
0.84 1.61 

0.9990 0.9990 
0.9915 0.9915 
0.9664 0.9664 
0.8791 0.8791 
0.7303 0.7303 
0.5384 0.5384 
0.1713 0.1713 
0.000 o.Oo0 

1.0006 1.0006 
1.0050 1.0050 
1.0171 1.0171 
1.0282 1.0282 
0.9617 0.9617 
0.7781 0.7781 
0.2721 0.2721 
o.Oo0 o.Oo0 

Ml M2 

1.0015 1.0007 
1.0117 1.0043 
1.0375 1.0070 
1.0819 0.9890 
1.0994 0.9825 
1.0763 1.0297 
0.9524 1.2414 
0.8506 1.4116 

1.0013 1.0017 
1.0102 1.0127 
1.0331 1.0382 
1.0733 1.0805 
1.0960 1.1317 
1.0943 1.2136 
0.9981 1.5629 
0.719 1.852 

1.0004 1.0004 
1.0030 1.0030 
1.0095 1.0095 
1.0058 1.0058 
0.9268 0.9268 
0.7414 0.7414 
0.2559 0.2559 
0.000 0.000 

1.Oo09 1.Oo09 
1.0081 1.0081 
1.0289 1.0289 
1.0632 1.0632 
1.0158 0.0158 
0.8335 0.8335 
0.2916 0.2916 
o.oO0 0.000 

TABLE 2. The mobility parameters M ,  and M ,  for the axisymmetric electrophoresis of two 
freely suspended spheres with a, = a, = a for the case f = 0.4 and K a  = 100 

from 1 to 8. Also, the spheres translate faster with smaller Ka.  However, when 
2 = 2 or 3 as shown in figures 4 ( 6 )  and 4 (c ) ,  a maximum of the particle velocity exists 
for some cases. When K a  increases, the maximum occurs at a larger zeta potential. 
Note that these maxima for the cases with 2 = 3 take place at smaller zeta potentials 
than those with 2 = 2. 

In  figure 5 ,  it is shown that there is no particle interaction in electrophoresis for 
each case as long as the value of K a  approaches infinity. This result is in accordance 
with the situation considered earlier using the Helmholtz relation, instead of (2.8), to 
express the ‘slip velocity’ at the particle surfaces (Reed & Morrison 1976). From 
figure 5(a)  for the case 2 = 1, the particle interaction is weakened steadily as K a  

becomes large gradually. A novel result is that, as shown in figures 5 (b )  and 5 (c) for 
2 = 2 and 3 respectively, there can be a maximum of the particle interaction 
occurring at some K a  for the representative cases of [e/kT = 5 and 8. This 
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0.92 - 
lop 10' 10' los 10' 10' 

Ka 
FIGURE 6. Plots of the mobility parameters of two equal-sized spheres versus the ratio of sphere 
radius to the Debye length K a  with Zald,, = 0.6 and f = 0.4: (a)  c,e/kT = 1 and c2e/kT = 5, 
( b )  5, e/kT = 3 and c2e/kT = 6, ( c )  c,e/kT = -c,e/kT = 5 or 8 (M, = M2).  

observation can also be predicted from figures 4(b )  and 4(c) .  If the particles are 
charged more highly or the counterions have a larger magnitude of valence, the 
locations of these maximal interactions will shift toward larger K a ,  that means larger 
values of K a  are required to  make the assumption of Ka-f  co valid. 

4.3. Two arbitrary free spheres 
In this subsection, we first present the results for two spheres of the same size 
(a, = a, = a )  having different zeta potentials. The values of mobility parameters at  
various particle separations are illustrated in table 2, in which all the results are at  
least convergent to the digits as shown. In figure 6(a-c), plots of the mobility 
parameters MI and M ,  versus K a  are drawn for 2a/d,, = 0.6. It is evident that as K a  

becomes very large, the electrophoretic mobility of each sphere will approach the 
value calculated by ignoring the polarization effect of the double layer (Keh & Chen 
1989a). When the two particles have the zeta potentials of the same electrical sign, 
the numerical results for the case 2 = 1 are consistent with the general intuition for 
the axisymmetric electrophoretic motion that the particle with the larger velocity 
would be slowed down by the other, which a t  the same time is accelerated by the 
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FIGURE 7. Plots of the mobility parameters MI (solid curves) and MI (dashed curves) of 
two unequal-sized spheres with the same zeta potential versus the ratio of the radius of sphere 1 
to the Debye length K a l  for the case of ag/al = 2, (al+a,)/dl, = 0.6 and f =  0.4: (a)  {e/kT = 2, 
( b )  {e/kT = 5 ,  ( c )  {e/kT = 8. 

former. However, no theoretical rule could appropriately predict the particle 
interaction for the cases of 2 = 2 and 3. For the case of two touching spheres 
(2a/d12 = i), they migrate as a single particle and their electrophoretic velocities are 
identical. If the pair of spheres are charged oppositely but with equal magnitudes of 
zeta potential, they will translate at the same speed but in opposite directions along 
their line of centres. Whether the particle velocities are increased or decreased 
depends on the combination of 6, 2, f, Ka and 2a/d12, as illustrated in table 2 and 
figure 6(c ) .  When these two spheres touch, they act like a neutral body and both of 
them will be motionless. 

Since many dispersions in practical applications are constituted from particles of 
the same material, it might be of interest to examine the interactions between two 
identically charged spheres (Cl = Q = 6) with unequal sizes. The results for the 
interaction parameters for spheres with a2/al = 2 and (al + a,)/d12 = 0.6 are depicted 
versus K a l  in figure 7 (u-c). It is understood that, although the two spheres possess the 
same zeta potential, they will move a t  different speeds even if situated very far apart. 
In general, the influence of the particle interaction is more significant on the smaller 
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one than on the larger. In can also be seen that the shift of the locations of the 
maximal particle interactions is like that for a pair of identical spheres. Again, 
whether the particle interaction enhances or retards the electrophoretic velocity of 
each sphere depends on the combination of parameters for each case. 

4.4. Three free spheres 

The utilization of the multipole collocation technique for solving the three-particle 
problem becomes more difficult than for the case of two spheres. The presence of the 
third sphere results in an increase in the number of unknown coefficients to be 
determined for ,urn and Y, so that a longer computing time is needed. Therefore, we 
only consider the simplest case in this subsection : three spheres having equal radii 
(a,  = a2 = a3 = a) and zeta potentials (cl = c2 = Q = 5) separated at the same 
spacing on a straight line (d lz  = dz3) .  The values of the mobility parameters 
M ,  ( = M 3 )  and M2 as a function of 2a/d lZ are listed in table 3. For the cases of 
[e/kT = 5 and 8, we could not obtain a convergent solution when the three spheres 
all touch ; thus, only the results for 2a/d , ,  < 0.99 are presented. As expected, the 
velocity of the middle sphere is affected more by the particle interaction than are 
those at each side of it. 

It may be of interest to see the difference between two-particle and three-particle 
interaction effects on the electrophoretic velocities. A comparison between table 3 
and figure 3, shows that the existence of the third sphere enhances the two-particle 
interaction effect on both sphere 1 and sphere 2. 

4.5. A rigid cluster of spheres 

The velocity of a linear rigid cluster of spheres undergoing axisymmetric electro- 
phoresis can be determined by the procedure described in 93.4. For conciseness, 
here we only consider the motion of a dumbbell, along the line connecting the centres 
of its two spheres. The results for the electrophoretic mobility of the dumbbell, 
expressed in terms of the dimensionless form Uo/Ulo ,  versus the separation parameter 
( a , + a , ) / d , ,  are exhibited in table 4. The last column in table 4 represents results 
neglecting the polarization effects of the ions in double layers, for comparison. 
Generally speaking, the polarization effects on the electrophoresis of a rigid dumbbell 
can be quite large under appropriate conditions. 

For the simplest case that its two spheres are identical both in radius and in zeta 
potential, the dumbbell will move at the same speed as that of either of these two 
spheres suspended freely and separated by the same distance as discussed in $4.2. 
When the two spheres of a dumbbell are of the same size but unequal zeta potentials, 
the contribution of each particle to the mobility of the dumbbell is no longer 
equivalent, as show in the first five rows of table 4. As the two spheres get closer, the 
influence on the dumbbell’s velocity of the sphere with larger U,, seems to become 
more important. This discovery differs from the deduction of previous studies, in 
which the diffuse-layer polarization effect is ignored, that a dumbbell composed of 
two equal-sized spheres will just translate at the mean undisturbed velocity of the 
two spheres (Fair & Anderson 1990; Keh & Yang 1991). 

In a suspension of colloidal particles of the same material, all the particles should 
have identical zeta potentials. Since flocculation by bridging of different-sized 
particles can occur usually, it might be important to examine the electrophoretic 
motion of such a dumbbell. Listed in the second five rows of table 4 are the 
electrophoretic velocity results for the case of a rigid dumbbell composed of two 
spheres with a2/al = 2 ,  KU, = 100 and c, e / k T  = c2 e/kT = 5.  As expected, the larger 



Axisymmetric electrophoresis of multiple colloidal spheres 273 

2a - 6 
kT dl2 

- 

0.8 
1 .o 

2 

0.8 
0.99 

5 

0.8 
0.99 

8 

z = 1  2 = 2  2 = 3  

Ml 

1 .0001 
1.0007 
1.0021 
1.0033 
1.0039 

1 .OW7 
1.0057 
1.0175 
1.0331 
1.0475 

1.0015 
1.0120 
1.0396 
1 .OW7 
1.1910 

Ma 

1.0002 
1.0012 
1 .W32 
1.0044 
1.0039 

1.0013 
1.0097 
1.0273 
1.0450 
1.0490 

1.0027 
1.0205 
1.0625 
1.1247 
1.1972 

Ml 

1 .0003 
1.0023 
1.0067 
1.0116 
1.0147 

1.0015 
1.0121 
1.0408 
1.0977 
1.2347 

1.0003 
1.0028 
1.0099 
1.0266 
1.0916 

Me 

1.0005 
1.0039 
1.0105 
1.0155 
1.0147 

1.0027 
1.0207 
1.0645 
1.1343 
1.2424 

1.0006 
1.0047 
1.0156 
1.0365 
1.0946 

Ml 

1.0007 
1.0055 
1.0169 
1.0324 
1.0477 

1 .0006 
1.0046 
1.0162 
1.0427 
1.1417 

1 .oooo 
0.9996 
0.9991 
0.9991 
1.0014 

Ma 

1.0013 
1 .0094 
1.0266 
1 .0440 
1.0477 

1.0010 
1.0079 
1.0256 
1 .0587 
1.1462 

0.9999 
0.9994 
0.9986 
0.9988 
1.0015 

TABLE 3. The mobility parameters M ,  (=  Ma) andMz for the axisymmetric electrophoresis of three 
identical spheres (al = aa = a, = a and = t;* = t;* = 5) suspended freely with equal spacings 
(d12 = d28) for the case f = 0.4 and K a  = 100 

a2 - t;, e - 5, e a,+% 
a1 kT kT 4, 
- 

0.2 

1 1 5 (i 
1 .o 

0.8 
0.99 

0.2 

2 5 5 

2 4 -1 

1 .o 

Z = 1  

2.4262 
2.4281 
2.4302 
2.4257 
2.4107 

1.0887 
1.0957 
1.1061 
1.1163 
1.1226 

0.1070 
0.0629 
0.0110 

-0.0414 
- 0.0897 

z=2  

1.3051 
1 .3099 
1.3193 
1.3258 
1.3203 

1.2593 
1.2802 
1.3136 
1.3571 
1.4186 

- 0.0235 
-0.0744 
-0.1348 
-0.1970 
-0.2558 

2 = 3  

0.8022 
0.8084 
0.8221 
0.8389 
0.8506 

1.1191 
1.1288 
1.1448 
1.1683 
1.220 

-0.5236 
-0.6OOO 
-0.6910 
-0.7833 
-0.8680 

~ O I ~ l O  
(with polarization) 

U O I ~ l O  
(without 

polarization) 

3.000 
3.000 
3.000 
3.000 
3.000 

1 .000 
1 .000 
1 .000 
1 .000 
1 .000 

0.1344 
0.091 7 
0.0419 

-0.0075 
-0.0536 

TABLE 4. The dimensionless electrophoretic velocity of a rigid dumbbell Uo/Ulo along the line 
connecting two spheres for the case f = 0.4 and K U ~  = 100 

sphere dominates the motion of the dumbbell and its influence becomes more 
important when the two spheres are less separated. Also, the tendency that the 
interaction effect is strong for the case of 2 = 2 and weak for 2 = 1 is consistent with 
the results of figure 7 ( b )  for two free spheres with (;e/kT = 5 .  
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An interesting case is the electrophoresis of a neutral dumbbell (with zero 
area-averaged zeta potential, i.e. the ratio {.Jc1 equal to -u:/ai). In the third 
five rows of table 4, we show the dumbbell mobility versus (a,+a,)/d,, for the case 
cle/kT = 4, {2e/kT = - 1 and a2/al = 2. It can be seen that, as before, the larger 
sphere will increasingly dominate the dumbbell’s movement as the distance between 
the two spheres decreases. For most situations, the neutral dumbbell moves in the 
same direction as that of the larger sphere when isolated, especially for the cases 
2 = 2 and 3. This observation is qualitatively consistent with that in Fair & Anderson 
(1990) and Keh & Yang (1991). 

8. B. Chen and H .  J .  Keh 

5. Conclusions 
In this paper the electrophoretic motion of colloidal spheres with thin but 

distorted electrical double layers is studied. Not only the movement of an isolated 
sphere but also the interactions among a finite assemblage of spheres moving along 
their line of centres have been examined. The governing equations in the ‘outer’ 
region can be solved by applying the boundary conditions provided by the solution 
for the ‘inner ’ region and using a matching procedure to ensure a continuous solution 
in the whole fluid phase. There are four factors influencing the mobility of a particle : 
the zeta potential at  the surface, the ratio of the particle dimension to the Debye 
length, the valences of ions in solution and the ionic drag coefficients. The 
polarization of the diffuse ions will hinder the electrophoretic velocity of the sphere 
compared to what the Smoluchowski equation predicts. 

For the axisymmetric electrophoresis of multiple spheres or a rigid dumbbell freely 
suspended in the fluid, a combined analytical-numerical procedure with the 
multipole collocation technique has been used to solve the electrochemical potential 
distributions and the velocity field for the fluid around the spheres. The most 
important discovery is that particle interactions actually exist among spheres with 
identical zeta potentials in an unbounded fluid as long as K a  is finite. In addition, the 
particle interaction is no longer a simple monotonic function of both the spheres’ and 
ions’ properties as well as the separation distance for some cases. No general rule can 
make an adequate prediction for such a complicated phenomenon. This novel result 
should be noted by both theoreticians and experimentalists in relevant fields. 

Appendix 
We begin by deriving (2.11) which can then be used to obtain (2.12) by the 

analytical integration over the double layer for the system in which the fluid 
comprises only a single kind of symmetric electrolyte. 

We take a slab-shaped control volume lying on the particle surface, which is just 
a portion of the double layer with thickness t ( Q  L ) .  Integrating both sides in ( 2 . 6 ~ )  
over the entire control volume and using the divergence theorem yields (O’Brien 
1983) 

1 kT 
nkVp,--(nk-n:)u .dS= 0 .  

D m  
surface 

The second term in the integral is replaced by kTnk u/D, in O’Brien’s article. Both 
of them are correct because Vnk = V(nk - n z )  when all bulk ionic concentrations n; 
are uniform. We can substitute u in (2.8) into (A l),  and then follow the same 
procedure as that employed by O’Brien to  obtain (2.10) and (2.11). 
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For a symmetric electrolyte with absolute value of valence 2, the one-dimensional 
Poisson-Boltzmann equation, 

-- d2@0 1 
d$ - -sinhZ&O, 2 

possesses an analytical solution : 

6 0  = Zln [ 1 + Y exp (-”’I 
Z l-yexp(-y) ’ 

y = t anhc  (A 4) 

where c= Ze[/4kT and [ is the zeta potential associated with the solid surface. One 
can substitute 6O in (A 3) into (2.1 1)  to evaluate the integrals. The upper limit ~t in 
the integration, which represents the outer edge of the double layer, may be regarded 
as infinity from the viewpoint of the boundary-layer concept, so that the parameters 
Pmk can be computed and expressed by 

12f - 
exp (0 sinh c-+ ([+In cosh z 

BIZ = &[Kt+(%)lncoshc], 

PZl = & [ K t  + (9) In cosh 51, 

-1 e x p ( - ~ s i n h ~ + ~ ( 6 - l n c o s h ~ ) .  12f - ( A 5 d )  
2 2  

We adopt (2.11) rather than the corresponding formula originally derived by O’Brien 
(1983) because some divergent integrations of infinite series can be avoided 
(Anderson &, Prieve 1991). Since there is no definite boundary for a double layer and 
we have assumed t /L  < 1, the ~t terms in the above equations may be safely 
neglected. Then, (A 5 )  is reduced to (2.12). 
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